
Brian D Brown, PhD
About Me
Dr. Brian Brown is an immunologist and molecular biologist whose research has a strong focus on biotechnology and therapeutics. His training began with his doctoral studies in Canada and his work to establish ways to overcome the immune response hindering gene therapy. He subsequently did his postdoctoral studies in Italy where he helped develop a new platform for controlling gene expression, which has led to improvements in experimental treatments for genetic disease, cancer, and viral infection. Dr. Brown's lab is now working to identify the factors that control immunity and tolerance, and translate these findings in to strategies that can be used to turn the immune system against cancer or viruses. In 2008 Dr. Brown joined the faculty of Mount Sinai he was promoted to full Professor with tenure in 2018. In 2016 he became the Associate Director of Mount Sinai's Precision Immunology Institute (PrIISM) and in 2021 he was named Director of the Icahn Genomics Institute (IGI).
Visit the Brown Lab homepage at:
http://www.thebrownlab.org/
Language
English
Position
VICE CHAIR | Immunology & Immunotherapy, DIRECTOR, ICAHN GENOMICS INSTITUTE, ASSOCIATE DIRECTOR OF THE PRECISION IMMUNOLOGY INSTITUTE, PROFESSOR | Genetics and Genomic Sciences, PROFESSOR | Dermatology, PROFESSOR | Immunology & Immunotherapy
Research Topics
Antigen Presentation, Autoimmunity, Cancer, Cellular Immunity, Dendritic Cells, Gene Discovery, Gene Expressions, Gene Regulation, Gene Therapy, Gene editing, Genomics, Immunological Tolerance, Immunology, Inflammation, Macrophage, Molecular Biology, RNA, RNA Splicing & Processing, Stem Cells, T Cells, Tolerance, Transcriptional Activation and Repression
Multi-Disciplinary Training Areas
Genetics and Genomic Sciences [GGS], Immunology [IMM]
Education
BSc, University of Guelph
Fellowship, San Raffaele Scientific Institute
PhD, Queen's University
Research
Immunology; Cancer; Inflammation; Innate Immunity; Biotechnology; Molecular Biology; Gene Regulation;
Summary of Research Studies:
A major focus of our work is aimed at identifying factors that control immunity and tolerance, and utilizing this information for developing therapeutic strategies that can direct antigen-specific immune responses. We helped to identify some of the transcriptional programs that regulate dendritic cell differentiation and function (Miller et al. Nat Immunol 2012), and we discovered a pathway controlling the innate response to nucleic acids, which involves the microRNA miR-126, and the main VEGF receptor, VEGFR2 (Agudo et al. Nat Immunol 2014). We are now using a new technology we developed, called the Jedi, to probe the interactions between T cells and tissues at a granular level, and learning how the tissue controls immune responses (Agudo et al. Nat Biotech 2015). This work has important implications for the development of autoimmunity as well as cancer immunology.
Our lab also has a strong emphasis in the generation of new technologies for experimental and therapeutic applications. We led the development of a novel gene targeting technology, which is now widely used for enhancing vector and virus-based drugs in applications ranging from the treatment of genetic diseases to cancer therapy to viral vaccines (Brown et al. Nat Med 2006, Brown et al. Nat Biotech 2007, Brown and Naldini. Nat Rev Gen 2009). We also developed the first genome-wide technology to measure miRNA activity and function at single cell resolution (Mullokandov, Baccarini, Ruzo et al. Nat Meth 2012), and aided in the invention of an improved method for deep sequencing small RNAs (Jayaprakash et al. Nucl Acid Res 2011). We helped develop a new platform for predicting the immune systems response to 100s of drugs (Kidd, Wroblewska et al. Nat Biotech. 2016).
Postdoctoral and graduate projects are available involving: (i) cancer immunology and immunotherapeutics, (ii) the discovery of novel gene expression networks in the immune system, and (iii) the development of novel technologies and therapeutics.