Mount Sinai Health System
Search
Profile image of Yelena Z Ginzburg
Video Visit Available
Accepting New Patients
  • Mount Sinai Doctors
  • Treats Adults

Yelena Z Ginzburg, MD

Internal Medicine, Hematology-Oncology

No Patient Experience Ratings
212-241-6756
View location details

Clinical Focus

Education

MD, Sackler School of Medicine (Tel Aviv University)

Residency, Internal Medicine

Montefiore Medical Center

Residency, Internal Medicine

Montefiore Medical Center-Moses Division

Fellowship, Hematology & Oncology

Montefiore Medical Center

Fellowship, Hematology & Oncology

Montefiore Medical Center

Certifications

American Board of Internal Medicine

Research

Another main interest of the laboratory is to understand the regulation of erythrocyte differentiation and survival. Epo binding to Epo receptor triggers a complicated and incompletely understood set of potentially related molecular signals influencing cell survival, differentiation, and enucleation. Although Epo is associated with increased survival of erythroid precursors, it induces reactive oxygen species (ROS), and high Epo concentration has an anti-enucleation effect in vitro [Zhao Exp Hematol 2016]. Furthermore, diseases of ineffective erythropoiesis, e.g. β-thalassemia, are associated with increased Epo and ROS concentrations implicated in the expansion of and damage to erythroid precursors, respectively. Treating erythroblasts with low dose ROS scavenger promotes enucleation, but high dose ROS scavenger leads to cell death [Zhao Exp Hematol 2016], suggesting that an optimal ROS concentration is integral to effective erythropoiesis. We and others have shown that ROS is increased in β-thalassemic erythroid precursors, but despite increased ROS, erythroid precursor apoptosis is not increased. We hypothesize that compensatory mechanisms prevent the ill-effects of increased ROS on erythroid precursors. Our prior experiments demonstrate disordered erythropoiesis in β-thalassemic (th1/th1) mice, restored in transferrin-treated th1/th1 mice [Liu Blood 2013], despite which, ROS remained increased in erythroid precursor from transferrin-treated th1/th1 mice. To identify mechanisms responsible for transferrin’s effect, we performed RNA seq analysis of erythroblasts from wild type (WT), th1/th1, and transferrin-treated th1/th1 mice. We identified increased pleckstrin-2 (plek2) in th1/th1 relative to WT mice, normalized in transferrin-treated th1/th1 mice. We hypothesize that plek2 activation counteracts the ill effects of ROS and promotes enucleation in β-thalassemia. Another currently funded collaborative R01 is aimed at exploring the role of plek2 in erythroid differentiation and enucleation in β-thalassemia (R01 NIDDK; PI: Ji).


Please visit the Ginzburg Laboratory.

Insurance Information

Accepted insurance may vary by the doctor’s office location. Please contact the office directly to obtain the most up-to-date insurance information.

Physicians who provide services at hospitals and facilities in the Mount Sinai Health System might not participate in the same health plans as those Mount Sinai hospitals and facilities (even if the physicians are employed or contracted by those hospitals or facilities).

Information regarding insurance participation and billing by this physician may be found on this page, and can also be obtained by contacting this provider directly. Because physicians insurance participation can change, the insurance information on this page may not always be up-to-date. Please contact this physician directly to obtain the most up-to-date insurance information.

Insurance and health plan networks that the various Mount Sinai Health System hospitals and facilities participate in can be found on the Mount Sinai Health System website.

Industry Relationships